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Unusually high values of the quotient din I']/dln M == a (where I'] is viscosity and M is molecular 
weight) found for some low-molecular-weight liquid polymers (4 ~ a ~ 8) are discussed in terms 
of the theory of flow processes of polymeric liquids. The effect is assigned mainly to the dependence 
on the chain length of the friction factor per main chain atom or atomic group but deviations 
of short chains from the conformation of random coils can also contribute significantly. The 
variation ofthe quotient a with temperature, however, is due to the former factor only. 

Basing on the suggestion by Ewell!, the theory offlow processes in liquid polymers2 

considers the zero-shear viscosity, '7, to be a product of two factors, viz., of the 
structural factor, F(X), and of the friction factor per main chain atom or atomic 
group, (, 

'7 = F(X). C (1) 
where 

F(X) = (NA /6) Xc(X/Xc)a , (2) 

X = ZS~/MV2' (3) 

Z = M/rna , (4) 

and 

( = (0 exp [I/a(T - To)] . (5) 

Here, NA is the Avogadro number, M is the polymer molecular weight, ~ is the 
unperturbed mean-square radius of gyration of the polymer molecule, V2 is the 
specific volume of the liquid polymer, Z is the number of main chain atoms (or 
groups) of the mean molecular weight rna each, (0 is the inherent friction factor per 
main chain atom, a and To are empirical parameters. The symbol Xc stands for the 

Collection Czechoslovak Chern. Commun. [Vol. 50] [1985] 



Low-Molecular-Weight Liquid Polymers 2571 

"critical" value of the combined variable X at which, due to the onset of entangle
ment of polymer chains, the logarithmic plot of '1 vs M shows a more or less abrupt 
change in the slope. 

The quotient a == dIn '1/dln M equals 3·4 at X > Xc and is expected to be unity 
at X < Xc' In the latter range, however, the quotient sometimes depends on the 
chain length and is 1 ~ a ~ 2·5 (refs2 •3). This fact is assigned to a molecular-weight 
dependence of the frictIon factor (C), so that on recalculating isothermal viscosity 
data to the limiting ( constant) value of the friction factor, the proportionality of visco
sity and molecular weight is obtained2 • 

Unusually high values of the quotient (4 ~ a ~ 8) have been observed in the 
low-molecular-weight region with unsaturated polyesters4 - 6 (300 ~ Mn ~ 103), 

polyesters of phthalic acid7 (300 ~ Mn ~ 700), and with epoxy resins8 (Me < 2 . 
. 103), and a decrease of the quotient with increasing temperature has been reported 
in some cases4 •8 . 

In the present paper we try to explain this behaviour by taking into account the 
molecular-weight dependence not only of the friction factor (C) but also of some 
other factors in the above equations which, for high molecular weights, can be 
assumed to be invariant with respect to M. 

THEORETICAL 

According to Eqs (1) to (5), the viscosity at X < Xc should be proportional to the 
number of polymer chains per cm3 (i.e., NA /Mv2 ), mean-square distance of the 

frictional centres from the centre of mass (i.e., to ~), number Z of main chain atoms 
or atomic groups acting as frictional centres, and to the mean friction factor (C). 
The latter is a characteristic of intermolecular forces between segments of different 
chains. The proportionality to molecular weight has been predicted for the viscosity 
of non-interacting and free-draining coils in solution9 , and the free-draining beha
viour of liquid polymers is explained by the intramolecular hydrodynamic interaction 
being screened by the macromolecular surroundings2 • 

If polymer chains are short, several factors in Eqs (1) to (5) become dependent 
on molecular weight. The specific volume, V2' is higher than its limiting value be

cause of the end-group effect. The ratio ~/M in Eq. (3) is lower than its limiting 

value (~/M)<rJ' The parameters oc and To vary considerably with Z at Z ~ 500 
(ref.2). One also could speculate about a dependence on molecular weight of the 
inherent friction factor, Co. This, however, has been shown to be constant at Z > 80 
(ref.2), and an analysis 1 ° of the data for unsaturated polyesters has detected no signi
ficant deviations from this rule even at 25 < Z < 80. 

Taking all these factors into account, one obtains from Eq. (1) for X < Xc, 

(6) 
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where 

Bohdanecky, Kastimek, Lesek: 

a l = dIn v2jdln M , 

a2 = dIn 5gjdln M , 

1 [1 d To dIn !X ] 
!X( T - To) T - To . dIn M - dIn M . 

(7) 

(8) 

(9) 

The quotients a l' a 2 and a3 are now discussed in detail. 

Specific Volume 

The dependence of the specific volume on molecular weight can be described by the 
equation2 

V2 = v';,' + kdM, (10) 
so that 

al -[1 + (V';,'jkl) MJ-l (11a) 

and 

lim a l = O. (11 b) 
M .... oo 

The convergence of at to its limiting value depends on the value of v';,' jkt . Typically, 
v';,'jkt ~ 0·1 so that at = -0·1, -0·01, and -0·001 for M 102, 103 and 104, res
pectively. 

Mean-Square Radius of Gyration 

The mean-square radius of gyration,~, appears in Eq. (3) because, according to the 
theory of Debye9 , the viscosity of free-draining coils is proportional to the sum 
of the average square of the distance of one group from the centre of gravity, 
L: (Sf>, in other words to the mean-square radius of gyration, 
j 

~S -! "S2 0- L.,j. 
n j 

The sum depends on the distribution function of main chain atoms around the centre 
of gravity. For chains long enough to assume the conformation of random coils 

(n -+ co), ~ is proportional to the number of main chain bonds, n. For short chains 

the distribution function is different and the ratio S1jn is a function of n. We now 
compare the value of a2 for several chains at a finite number of bonds. 
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The simplest model is the freely jointed chain composed of n main chain bonds 
whose length, I, is fixed but whose orientation is random. For this model11 , 

~ = (nlzJ6) (n + 2)j(n + 1), (12) 
so that 

n 
az = 1 - ------

(n + l)(n + 2) 
(13) 

Fig. 1 shows that for the freely jointed chain, the quotient az only very slightly in
creases with the number of bonds. 

Relations between S~ and n for other models (e.g. free-rotating chain, chain with 
independent rotations, cf12) are rather involved, so we prefer evaluating az from the 
results of theoretical calculations for several real chains with fixed bond length 
and angles, and with interdependent rotations around the main chain bonds. The 

dependences of the mean-square end-to-end distance, RI, on the number of bonds 
are available in graphs only but Orofino13 succeeded to find a simple analytical 
form 

(14) 

where B is a parameter and Cet;) is the characteristic ratio, 

Cet;) = lim (~jnlZ). (15) 
n--+ 00 

Eq. (14) reproduces the original values with a precision better than 2%. For the 
mean-square radius of gyration, Orofino obtained 

(16) 

The quotient az calculated from Eq. (16) is 

(17) 

Fig. 1 represents the dependence on the number of bonds of the quotient az 
for e<-ethyl-ro-ethoxy-poly( oxyethylene) and poly( oxyethylene )14 (Coo = 4·0), nylon 
66 (ref. 14) (Coo = 6·1), and polymethylene14 (Coo = 6·7). The quotient is a strongly 
decreasing function of the number of bonds, the decrease being the steeper the 
higher the chain stiffness characterized by the value of COO" At n > 100 (200), az is 
lower than 1·2 (H). 
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Let us compare these findings with a general prediction based on the Kratky-Porod 
worm-like chain model1s •16 which is frequently used to mimic the stiff and/or short
polymer chains. It is characterized by the reduced contour length, L" and the per
sistence length b. The former is defined as 

(18) 

where M L is the molecular weight per unit contour length and A -1 is the Kuhn 
statistical segment length, 

r 1 = 2b. (19) 

Benoit and Doty12 have shown that the mean-square radius of gyration depends 
on Lr according to the equation 

The quotient a 2 is readily obtained from Eq. (20) as 

a _ 1 + lL~1[1 - L~1(2 + e- 2Lr) + lL~2(1 - e- 2Lr)] 
z - 1 _ 1-L;1[1 _ L;1 + -!-L;2(1 _ e- 2Lr)] , 

(21a) 

lima2 = 1. (21 b) 
Lr-+ 00 

It is a decreasing function of L" being 1·69 > az > 1·14 at 1 ~ Lr ~ 10 and ap
proaching its limiting value at Lr > 100. Since the chain length corresponding 
to a fixed value of Lr (say 10) is the lower, the lower r 1, it is clear that the quo-

6r---r-----.---------~--~ 

2 

/----------------

OL-------~5~O~------~1~O~O--~ 
n 

FIG. 1 

Dependence of the quotient Qz on the number 
of main chain bonds. Curve: 1 freely jointed 
chain (Eq. (13»), 2 to 5 real chains «Eq. (17) 
with B 2'5. 3'4. 4'6. and 5'6). Details in text 
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tient will sooner be close to unity for polymers with low A -t values. This is con
sistent with the results in Fig. 1. 

Parameters ex and To 

As has been emphasized in ref. 2 and confirmed in the study of unsaturated poly
esters lO , it is difficult to obtain accurate values of the parameters IX and To for low
-molecular-weight polymers and to find reliable expressions for their dependences 
on M. Equations 

IX = IX OO + ka./M, (22) 

(23) 

(with aCXJ = lim IX and Tooo = lim To) are used because of their similarity to equations 
M~oo M.-.oo 

describing the effect of molecular weight on the expansion coefficient of liquid poly
mers and the glass-transition temperatureS ,10. 

The quotients dIn IX/dIn M and dTo/dln Mare 

(24) 

(25) 

Their limiting values at M -+ 00 are zero, and their convergence depends on the 
values of IXoo/k" and kT' respectively. 

To illustrate the situation at this point, we calculate the quotients dIn IX/dIn M, 
dTo/dln M, and a3 according to Eqs (24), (25) and (lla) with kT = -9'7.103 , 

T;' = 247 K, k" = 0'13, and IX oo = 6·1 . 10- 4 , corresponding to an unsaturated 
polyester investigated in ref. to. The results for T 323 and 443 K are represented 
in Fig. 3 (curves 2 and 3). The molecular weight has been recalculated to the number 
of main chain bonds n (upper scale) according to n = M/m b , where mb (20'9) is the 
molecular weight per main chain bond. 

The quotient dIn IX/dIn M is negative whereas dTo/dln M is positive but their 
contributions to a3 according to Eq. (9) are of the same sign. 

DISCUSSION 

Fig. 3 (curve 1) shows that the quotient at is negligible at M > 103 and nearly 
so at M < 103 , so that its contribution to the quotient a is within the limits of error 
of the latter. 

The relevance of the quotient a2 (Figs 2 and 3) depends not only on the chain 
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ength, but also on the chain stiffness. It is always much higher than al but lower 
than a 3 • 

The curves in Fig. 3 have reference to an unsaturated polyester and would have 
a different shape with other polymers. We are aware of no data allowing an estima
tion of a 3 for polymers represented in Fig. 1. On the other hand, nothing is known 

about the molecular-weight dependence of ~/M for polyesters so that a corres
ponding curve cannot be drawn in Fig. 1. The characteristic ratio of unsaturated 
polyesters being17 Coo = 3·4 - 4, we believe that curve 2 or 3 in Fig. 1 can be used 
for semiquantitatively assessing the relative importance of the quotients a2 and a3 
in this particular case. 

According to these curves, a 2 is lower than 1·25 at n > 50 (i.e. M > 103) and does 
not exceed a2 = 2 even at n = 20 (M = 400). It cannot, therefore, fully account 
for the high value of the quotient a mentioned in the introduction for polyesters 
although it can be a relevant contribution to the latter at low chain lengths. 

The situation will be different with other polymers but unless the molecular-weight 
dependence of the quotient a3 is too different, the quotient a3 will probably be the 
most important factor contributing to a. 

Fig. 3 shows that with an increase in temperature, the quotient a 3 becomes lower. 
The other terms (a l , a2) are nearly independent of temperature, so that it is the 
variation of a3 with T which is responsible for the decrease in a. It can happen, 
however, that the term a2 will become comparable to a3 at higher temperatures. 

FIG. 2 

Dependence of the ratio S~/Lr and the 
quotient a2 on the reduced contour length 
of the worm-like chain model. Curve: 1 

p = (S5/Lr)/(S5/Lr)oo' 2 quotient a2 

8 

y 

FIG. 3 

Dependence of the quotients al and a3 on the 
molecular weight. Curve 1 y = -a1; curves 
2, 3 y = a3 calculated by means of Eqs (24), 
(25) and (11) for T 443 and 323 K. Details 
in text 
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The previous discussion rests on the assumption of monodispersity of polymer 
samples with respect to molecular weight. Polydispersity makes the analysis impos
sible because its effect on the parameters ex and To, which essentially are empirical 
quantities, is unknown. It is, however, not diffficult to discuss this effect, if the quotient 
a is equal or close to unity. 

In this case, the melt viscosity should be correlated with the weight-average mole
cular weight M w' If this cannot be measured so that the number average value M n 
has to be used, several possibilities exist for the relationship between the quotient 
lin of the correlation of 11 with Mn and the quotient a of the correlation with Mw' 

If the polydispersity index MwlMn is the same for all samples, the quotient an 
is equal to a. If, however, the polydispersity systematically varies with increasing M, 
the value of an can be higher or lower than a, depending on the trend of the variation. 

Let us discuss a special case. In some papers4 •5 mentioned in the introduction, 
the samples were non-fractionated products of polycondensation, taken at dif
ferent stages of the reaction and probably differing in polydispersity. In the fol
lowing paragraphs, we shall show that this fact can affect the quotient a in a significant 
way. If the initial mole ratio of the reaction components is unity, the following 
equations, based on the statistical theory of poly condensation, are valid18 : 

(26) 

(27) 

where P wand Pn are, respectively, the weight-average and number-average degree 
of polymerization. The polydispersity index P wi P n is an increasing function of q, the 
degree of conversion, and converges to P wi P n = 2 at q ~ 1. 

FIG. 4 

Polydispersity function f(Pn } calculated ac
cording to Eq. (31). Broken line: lim f(Pn } = 1 

q ... 1 

f(p"J 
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Let us write 

(28) 

If we substitute for P w according to Eqs (26) and (27), we obtain 

(29) 

The quotient an then is 

an == dIn l1/dln Pn = a f(Pn ) , (30) 

where 

(31) 

FIg. 4 shows that, at low degrees of polymerization, the polydispersity has a larger 
effect on the quotient an although the polydispersity index is closer to unity. At 
higher degrees of polymerization, the valuesoff(Pn) ~ lim f(Pn) = 1 so that an ~ a. 

q-l 

According to Eq. (30), an is the product of the "correct" quotient a and of the 
function f(Pn). Fig. 4 shows that, due to a systematic increase of polydispersity 
with molecular weight, the quotient an at low degrees of polymerization can be 
increased by 50 or 100% above the "correct" value, a. It is clear that the variation 
of polydispersity with molecular weight should be considered whenever the viscosity 
data of low-molecular-weight polydisperse polymers are correlated with Pn • 
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